Annual Drinking Water Quality Report for 2023 London Square Apartments 926 Route 146, Clifton Park, NY 12065 (Public Water Supply ID# NY4505645) ### INTRODUCTION To comply with State regulations, London Square Apartments will be annually issuing a report describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Last year, your tap water met all State drinking water health standards. We are proud to report that our system did not violate a maximum contaminant level or any other water quality standard. This report provides an overview of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. If you have any questions about this report or concerning your drinking water, please contact Jacob Fort, Designated Operator at 518-538-1480 or via email at jcfwater@gmail.com. We want you to be informed about your drinking water. ## WHERE DOES OUR WATER COME FROM? In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activities. Contaminants that may be present in source water include: microbial contaminants; inorganic contaminants; pesticides and herbicides; organic chemical contaminants; and radioactive contaminants. In order to ensure that tap water is safe to drink, the State and the EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. The State Health Department's and the FDA's regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Our water system serves approximately 640 people with 311 service connections. Our water source is groundwater wells which are located at the apartment complex. The water system consists of three drilled wells. The water is pumped from the wells into a 15,000-gallon storage tank. The water is disinfected with sodium hypochlorite and treated with phosphate as it is transferred to the storage tank. The New York State Department of Health has completed a source water assessment for this water system, based on available information. Possible and actual threats to the drinking water source were evaluated. The state source water assessment includes a susceptibility rating based on the risk posed by each potential source of contamination and how easily contaminants can move through the subsurface to the wells. The susceptibility rating is an estimate of the potential for contamination of the source water, it does not mean that the water delivered to consumers is or will become contaminated. See section "Are there contaminants in our drinking water" for a list of the contaminants that have been detected, if any. The source water assessments provide resource managers with additional information for protecting source waters into the future. The source water assessment has rated our water source as having an elevated susceptibility to microbials, nitrates, industrial solvents, and other industrial contaminants in close proximity of the wells to permitted discharge facilities contamination. These rating are due primarily to the number and proximity of the wells to discharge facilities (industrial/commercial facilities that discharge wastewater into the environment and are regulated by the state and/or federal government), and the commercial and residential land use in the protection from potential contamination. While the source water assessment rate our wells as being susceptible to microbials, please note that our water is disinfected to ensure that the finished water delivered into your home meets New York States drinking water standards for microbial contamination. The county and state health departments will use this information to direct future source water protection activities. These may include water quality monitoring, resource management, planning and education programs. A copy of the assessment can be obtained by contacting us, as noted below. ### ARE THERE CONTAMINANTS IN OUR DRINKING WATER? As the State regulations require, we routinely test your drinking water for numerous contaminants. These contaminants include: total coliform, inorganic compounds, nitrate, lead and copper, total trihalomethanes, haloacetic acids, radiological and synthetic organic compounds. The table presented below depicts which compounds were detected in your drinking water. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old. It should be noted that all drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (800-426-4791) or the Saratoga County Department of Health at 518-584-7460. | Table of Detected Contaminants | | | | | | | | | | |-------------------------------------|---------------------|-------------------|---|-------------------------|------|---|--|--|--| | Contaminant | Violation
Yes/No | Date of
Sample | Level
Detected
(Avg/Max)
(Range) | Unit
Measur
ement | MCLG | Regulatory
Limit
(MCL, TT
or AL) | Likely Source of Contamination | | | | Microbiological Contaminants | | | | | | | | | | | Total Coliform
Bacteria | NO | Monthly | 0 positive
samples | N/A | N/A | TT=2 or
more
positive
samples | Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. | | | | Disinfection By Pr | oducts | | | | | | | | | | Total
Trihalomethanes
(TTHMs) | NO | 8/15/23 | 2.7 | ug/l | N/A | 80 | By-product of drinking water chlorination needed to kill harmful organisms in drinking water. THM's are formed when source water contains large amounts of organic matter. | | | | Haloacetic Acids
(HAA5) | NO | 8/15/23 | 1.10 | ug/l | N/A | 60 | By-product of drinking water chlorination needed to kill harmful organisms in drinking water. | | | | Inorganic Contaminants | | | | | | | | | | | Barium | NO | 5/13/21 | 0.0283 | mg/l | 2 | 2 | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | |--|-----------------|----------|--|-------|-----|-----------------------|---|--| | Chloride | NO | 5/13/21 | 142 | mg/l | N/A | 250 | Naturally occurring or indicative of road salt contamination. | | | Copper | NO | 9/14/21 | 0.272 ¹
(0.0182-
.280) ² | mg/l | 1.3 | AL=1.3 | Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives. | | | Lead | NO | 9/14/21 | 0.000 ¹
(ND001) ² | ug/l | 0 | AL=15 | Corrosion of household plumbing systems; erosion of natural deposits. | | | Manganese | NO | 5/13/21 | 12.3 | ug/l | N/A | 300 | Naturally occurring; Indicative of landfill contamination. | | | Nickel | NO | 5/13/21 | 0.73 | ug/l | N/A | N/A | Naturally occurring. | | | Nitrate (As
Nitrogen) | NO | 4/27/23 | 1.80 | mg/l | 10 | 10 | Runoff from fertilizer use; leaching from septic tanks, sewage; Erosion of natural deposits | | | Sodium ³ | NO | 9/14/23 | 134 | mg/l | N/A | See footnote 4 below. | Naturally occurring; Road salt;
Water softeners; Animal waste | | | Sulfate | NO | 5/13/21 | 23.2 | mg/l | N/A | 250 | Naturally occurring. | | | Zinc
Synthetic Organic | NO
Contamina | 9/1/20 | 0.0184 | mg/l | N/A | 5 | Naturally occurring; Mining waste. | | | Perfluorooctanoic
5 Acid(PFOA) | NO | 11/16/23 | 4.65 | ng/L | N/A | 10 | Released into the environment
from widespread use in
commercial and industrial
applications | | | Perfluorooctanesu
Ifonic5
Acid(PFOS) | NO | 11/16/23 | 1.65 | ng/L | N/A | 10 | Released into the environment
from widespread use in
commercial and industrial
applications | | | Di(2-
ethylhexyl)phthal
ate | NO | 8/02/21 | 3.4 | ug/l | 0 | 6 | Used in plastic products such as polyvinyl chloride, plastic toys, vinyl upholstery, adhesives, and coatings. Compounds are likely to be released to the environment during production and waste disposal of these products. Also used in inks, pesticides, cosmetics, and vacuum pump oil. | | | Radioactive Conta | minants | • | | | • | • | | | | Gross Alpha
Activity | NO | 12/06/22 | 0.356 +/-
0.821 | PCi/l | 0 | 15 | Erosion of natural deposits. | | | Combined
Radium – 226
and 228 | NO | 9/01/20 | 0.255 | PCi/l | 0 | 5 | Erosion of natural deposits. | | ¹⁻ The level presented represents the 90th percentile of the 10 sites tested. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below it. The 90th percentile is equal to or greater than 90% of the lead or copper values detected at your water system. In this case, ten samples were collected at your water system and the 90th percentile value was the second highest value. The action level for neither lead nor copper was exceeded at any of the sites tested. - 2 The level presented represents the range of results. - 3 Water containing more than 20 mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water containing more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium diets. | Unregulated Perfluoroalkyl Substances | | | | | | | | |---|---------------------|----------------|-------------------|---------------------|---|--|--| | Contaminant | Violation
Yes/No | Date of Sample | Level
Detected | Unit
Measurement | MCLG of Health
Advisory Level ^{1,2} | | | | Perfluorobutanesulfonic Acid(PFBS) | NO | 11/16/23 | 1.65 | ng/L | 2,000 ng/L | | | | Perflurohexanoic Acid(PFHxA) | NO | 11/16/23 | 4.17 | ng/L | N/A | | | | Perfluoroheaxanesulfonic
Acid(PFHxS) | NO | 11/16/23 | 1.75 | ng/L | N/A | | | | Perfluoroheptanoic Acid(PFHpA) | NO | 11/16/23 | 1.54 | ng/L | N/A | | | | Perfluorobutsnoic Acid (PFBA) | NO | 11/16/23 | 4 | ng/L | N/A | | | | Perfluoropentanoic Acid (PFPEA) | NO | 11/16/23 | 5.34 | ng/L | N/A | | | - 1 USEPA Health Advisory Levels identify the concentration of a contaminant in drinking water at which adverse health effects and/or aesthetic effects are not anticipated to occur over specific exposure durations. Health Advisory Levels are not to be construed as legally enforceable federal standards and are subject to change as new information becomes available. - 2 All perfluoroalkyl substances, besides PFOA and PFOS, are considered Unspecified Organic Contaminants (UOC) which have an MCL = 0.05 mg/L = 50,000 ng/L. ### **Definitions:** <u>Maximum Contaminant Level (MCL)</u>: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible. <u>Maximum Contaminant Level Goal (MCLG)</u>: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. <u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination. <u>Action Level (AL)</u>: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. <u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water. **Level 1 Assessment:** A Level 1 assessment is an evaluation of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system. **Level 2 Assessment:** A Level 2 assessment is an evaluation of the water system to identify potential problems and determine, if possible, why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Non-Detects (ND): Laboratory analysis indicates that the constituent is not present. <u>Milligrams per liter (mg/l)</u>: Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm). <u>Micrograms per liter (ug/l)</u>: Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb). <u>Nanograms per liter (ng/l)</u>: Corresponds to one part of liquid to one trillion parts of liquid (parts per trillion - ppt). *Picocuries per liter (pCi/L)*: A measure of the radioactivity in water. ## WHAT DOES THIS INFORMATION MEAN? As you can see by the table, our system had no violations. We have learned through our testing that some contaminants have been detected; however, these contaminants were detected below the level allowed by the State. Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. London Square Apartments is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Jacob Fort at 518-538-1480 or via email at jcfwater@gmail.com. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead. # IS OUR WATER SYSTEM MEETING OTHER RULES THAT GOVERN OPERATIONS? During 2023, our system was in compliance with applicable State drinking water operating, monitoring and reporting requirements. ## DO I NEED TO TAKE SPECIAL PRECAUTIONS? Although our drinking water met or exceeded state and federal regulations, some people may be more vulnerable to disease causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care provider about their drinking water. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia and other microbial pathogens are available from the Safe Drinking Water Hotline (800-426-4791). ## INFORMATION ON UNREGULATED CONTAMINANTS In 2023, we were required to collect and analyze drinking water samples for the following unregulated contaminants: EPA Method 533 Per- and Polyfluoroalkyl Substances (PFAS) as part of PFOA/PFOS sampling. This sample was collected on November 16, 2023. You may obtain the monitoring results by calling Jacob Fort at 518-538-1480 or via email at jcfwater@gmail.com. ## WHY SAVE WATER AND HOW TO AVOID WASTING IT? Although our system has an adequate amount of water to meet present and future demands, there are a number of reasons why it is important to conserve water: - Saving water saves energy and some of the costs associated with both of these necessities of life; - Saving water reduces the cost of energy required to pump water and the need to construct costly new wells, pumping systems and water towers; and - Saving water lessens the strain on the water system during a dry spell or drought, helping to avoid severe water use restrictions so that essential firefighting needs are met. You can play a role in conserving water by becoming conscious of the amount of water your household is using, and by looking for ways to use less whenever you can. It is not hard to conserve water. Conservation tips include: - ♦ Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity. - ♦ Turn off the tap when brushing your teeth. - Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year. - Check your toilets for leaks by putting a few drops of food coloring in the tank, watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from one of these otherwise invisible toilet leaks. Fix it and you save more than 30,000 gallons a year. ## **CLOSING** Thank you for allowing us to continue to provide your family with quality drinking water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. The costs of these improvements may be reflected in the rate structure. Rate adjustments may be necessary in order to address these improvements. We ask that all our customers help us protect our water sources, which are the heart of our community. Please call our office if you have questions. JCF Water Consulting LLC P.O. Box 108 Victory Mills, NY 12884 518-538-1480